CONTOH MODEL TRANSPORTASI DAN PENYELESAIAN DENGAN NORTH WEST CORNER DAN MODI

Sebuah perusahaan saat ini beroperasi dengan 3 buah pabrik serta jumlah permintaan dari 3 Kota dengan kapasitas masing-masing sebagai berikut:

Pabrik	Produksi
Α	90 ton
В	60 ton
С	50 ton
Total	200 ton

Kota	Permintaan
Solo	50 ton
Kudus	110 ton
Tegal	40 ton
Total	200 ton

Perkiraan biaya transportasi (dalam ribuan/ton) dari setiap pabrik ke masing-masing Kota adalah:

- Dari pabrik A ke kota Solo = 20
- Dari pabrik B ke kota Solo= 15
- Dari pabrik C ke kota Solo = 25
- Dari pabrik A ke kota Kudus = 5
- Dari pabrik B ke kota Kudus = 20
- Dari pabrik C ke kota Kudus = 10
- Dari pabrik A ke kota Tegal = 8
- Dari pabrik B ke kota Tegal = 10
- Dari pabrik C ke kota Tegal = 19

Pertanyaan:

- 1. Bagaimana distribusi barang yang paling optimal quna memenuhi kebutuhan ketiga Kota tersebut?
- 2. Berapa total biaya optimal untuk distribusi barang dari pabrik ke Kota tujuan?

Solusi

A. Menentukan Solusi Awal dengan NWC

- Prosedur:
 - Alokasikan dengan kapasitas penuh pada sel kiri atas. Jika masih ada sisa kapasitas, alokasikan pada sel di bawahnya atau di kanannya sedemikian sehingga kapasitas baris atau kolom terpenuhi.
 - 2. Ulangi langkah 1 hingga seluruh kapasitas pada baris atau kolom terpenuhi.

- Catatan: Solusi awal matriks transportasi disebut feasible jika jumlah sel terisi adalah m+n-1 dimana m=jumlah baris, dan n=jumlah kolom. Jika sel terisi kurang dari m+n-1 maka perlu ditambahkan sel dummy dengan alokasi sebanyak 0 pada sel kosong yang memiliki ongkos terkecil.
- Solusi awal dengan NWC untuk masalah di atas:

TABEL 1

		Tujuan						
		Sc	olo	Kud	Kudus		gal	Total
	۸		20		5		8	00
	A	50		40				90
Pabrik	D		15		20		10	40
) <u>Ş</u>	В			60				60
	C		25		10		19	ΕO
	С			10		40		50
	Total	50		110		40		200

- 1. Cek kelayakan
 - o Jumlah sel terisi = 5 (sel basis)
 - o Jumlah Baris m=3; Jumlah Kolom n=3;
 - \circ m+n-1 = 3+3-1=5:
 - Solusi awal tersebut feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 1)
 - o Total Cost = (50x20) + (40x5) + (60x20) + (10x10) + (40x19) = 3260

B. Menentukan Solusi Optimal dengan Modi

Optimalisasi dilakukan dengan langkah sebagai berikut:

 Hitung nilai indeks baris dan kolom untuk semua sel terisi; Buat variabel indeks untuk setiap baris dan kolom, lalu susun persamaan:

untuk setiap sel terisi, dimana cij = ongkos per unit pada baris ke l kolom ke j. Substitusikan u1 = 0 untuk memperoleh semua nilai ui dan vj dari sel terisi.

2. Hitung nilai indeks perubahan ongkos **ĉij** (opportunity cost) dari semua sel kosong dengan rumus:

- 3. Evaluasi nilai ĉij
 - o Jika semua nilai **ĉij** non-negatif maka tabel transportasi sudah optimal.

- Jika masih terdapat ĉij yang bertanda negatif, maka tabel transportasi belum optimal dan dilakukan perubahan/perputaran sel isi, dengan prosedur sebagai berikut:
 - Pilih sel kosong dengan ĉij negatif terbesar sebagai entering variable (sel kosong yang akan dilakukan pengisian).
 - Buat loop dengan titik awal di sel kosong tersebut yang menghubungkan sel-sel terisi sebagai titik sudut loop. Tandai + dan – secara bergantian mulai dari sel kosong tersebut.
 - Pilih nilai sel terisi terkecil dari yang bertanda negatif (-) untuk dialokasikan ke sel kosong terpilih. Sesuaikan kapasitas baris dan kolom akibat perputaran sel isi tersebut.
- 4. Ulangi langkah 1 s.d. 3 hingga tabel optimal.

Tabel 1 dilakukan optimalisasi dengan metode MODI.

Hitung indeks baris dan kolom dari sel terisi

		v1		v2		v3		
			olo	Kudus		Teg	jal	Total
u1	Α		20		5		8	90
uı	А	50		40				90
u2	В		15		20		10	60
uz	В			60				00
u3	С		25		10		19	50
นอ	U			10		40		50
	Total	50		110		40		200

Sel Terisi	Indeks	u1=0
A1	u1+v1=20	v1=20
A2	u1+v2=5	v2=5
B2	u2+v2=20	u2=15
C2	u3+v2=10	u3=5
C3	u3+v3=19	v3=14

· Hitung indeks perubahan ongkos dari sel kosong

Sel	Indeks Prbhn.	ĉij
Kosong	Ongkos	
A3	ĉ13=c13-u1-v3	8-0-14=-6
B1	ĉ21=c21-u2-v1	15-15-20=-20
В3	ĉ23=c23-u2-v3	10-15-14=-19
C1	ĉ31=c31-u3-v1	25-5-20=0

Tabel 1 belum optimal, karena masih ada ĉij yang bernilai negatif. Sel kosong B1 terpilih sebagai entering variable dan akan diisi berdasarkan loop B1-A1-A2-B2 sebesar minimum(50,60) yaitu sebesar 50.

	Tujuan						Total
	So	lo	Kud	Kudus		al	iviai
۸		20		5		8	90
A	50-		-+40				90
В		15		20		10	60
D	+ -		-60				00
С		25		10		19	50
C			10		40		30
Total	50		110	•	40	•	200

Hasilnya adalah Tabel 2 berikut:

TABEL 2

		Tujuan					
	So	lo	Kudı	JS	s Tegal		Total
۸	A 20 90			5		8	90
A			90				90
D		15		20		10	40
В	50		10				60
С		25		10		19	50
C			10		40		30
Total	50		110		40		200

- 1. Cek kelayakan
 - o Jumlah sel terisi = 5 (sel basis)
 - Jumlah Baris m=3; Jumlah Kolom n=3;
 - o m+n-1 = 3+3-1=5;
 - Solusi awal tersebut feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 2)
 - O Total Cost = (90x5) + (50x15) + (10x20) + (10x10) + (40x19) = 2260
- 3. Cek optimalisasi Tabel 2
 - Hitung indeks baris dan kolom sel terisi

Sel Terisi	Indeks	u1=0
A2	u1+v2=5	v2=5
B1	u2+v1=15	v1=0
B2	u2+v2=20	u2=15
C2	u3+v2=10	u3=5
C3	u3+v3=19	v3=14

Hitung indeks perubahan ongkos sel kosong

Sel	Indeks Prbhn.	ĉij
Kosong	Ongkos	
A1	ĉ11=c11-u1-v1	20-0-0=+20
A3	ĉ13=c13-u1-v3	8-0-14=-6
В3	ĉ23=c23-u2-v3	10-15-14=-19
C1	ĉ31=c31-u3-v1	25-5-0=+20

Tabel 2 belum optimal, karena masih ada ĉij yang bernilai negatif. Sel kosong B3 terpilih sebagai entering variable dan akan diisi berdasarkan loop B3-B2-C2-C3 sebesar minimum(10,40) yaitu sebesar 10.

	Tujuan						Total	
	So	lo	Kud	us	s Tegal		iotai	
۸		20		5		8	90	
A			90				90	
В		15		20		10	60	
D	50		10		-+		00	
С		25		10		19	50	
C			10+ -		- 40		50	
Total	50		110		40		200	

Hasilnya adalah Tabel 3 berikut:

TABEL 3

	Tujuan						Total
	Si	olo	Ku	Kudus Tegal		al	iviai
Α		20		5	8		00
l A			90				90
В		15		20		10	60
D	50				10		00
С		25		10		19	50
C			20		30		50
Total	50	•	110		40		200

- 1. Cek kelayakan Tabel 3
 - → Jumlah sel terisi = 5 (sel basis)
 - → Jumlah Baris m=3; Jumlah Kolom n=3;
 - \rightarrow m+n-1 = 3+3-1=5;
 - → Tabel 3 feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 3)
 - O Total Cost = (90x5) + (50x15) + (10x10) + (20x10) + (30x19) = 2070

- 3. Cek optimalisasi Tabel 3
 - o Hitung indeks baris dan kolom sel terisi

Sel Terisi	Indeks	u1=0
A2	u1+v2=5	v2=5
B1	u2+v1=15	v1=19
В3	u2+v3=10	u2=-4
C2	u3+v2=10	u3=5
C3	u3+v3=19	v3=14

o Hitung indeks perubahan ongkos sel kosong

Sel	Indeks Prbhn.	ĉij
Kosong	Ongkos	
A1	ĉ11=c11-u1-v1	20-0-19=+1
А3	ĉ13=c13-u1-v3	8-0-14=-6
B2	ĉ22=c22-u2-v2	20-(-4)-19=+5
C1	ĉ31=c31-u3-v1	25-5-19=+1

Tabel 3 belum optimal, karena masih ada ĉij yang bernilai negatif. Sel kosong A3 terpilih sebagai entering variable dan akan diisi berdasarkan loop A3-A2-C2-C3 sebesar minimum(90,30) yaitu sebesar 30.

	Tujuan							Total			
	Sol	0	Kudus		Kudus		IS	•	Teg	al	10141
Α		20			5			8	90		
А			90-			+			90		
В		15			20			10	60		
D	50					10			00		
С		25			10			19	50		
C			20	0+		30)		30		
Total	50		11	0		40			200		

Hasilnya adalah Tabel 4 berikut:

TABEL 4

		Tujuan						
	Sc	olo	Kud	us	Teg	gal	Total	
Λ.		20		5		8	00	
A			60		30		90	
D		15		20		10	40	
В	50	,			10		60	
С		25		10		19	ΕO	
C			50				50	
Total	50		110		40		200	

- 1. Cek kelayakan Tabel 4
 - → Jumlah sel terisi = 5 (sel basis)
 - → Jumlah Baris m=3: Jumlah Kolom n=3:
 - \rightarrow m+n-1 = 3+3-1=5;
 - → Tabel 4 feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 4)
 - O Total cost = (60x5) + (30x8) + (50x15) + (10x10) + (50x10) = 1890
- 3. Cek optimalisasi Tabel 4
 - Hitung indeks baris dan kolom sel terisi

Sel Terisi	Indeks	u1=0
A2	u1+v2=5	v2=5
A3	u1+v3=8	v3=8
B1	u2+v1=15	v1=13
В3	u2+v3=10	u2=2
C2	u3+v2=10	u3=3

Hitung indeks perubahan ongkos sel kosong

Sel	Indeks Prbhn.	ĉij
Kosong	Ongkos	
A1	ĉ11=c11-u1-v1	20-0-13=+7
B2	ĉ22=c22-u2-v2	20-2-5=+13
C1	ĉ31=c31-u3-v1	25-3-13=+9
C3	ĉ33=c33-u3-v3	19-3-8=+8

Tabel 4 sudah optimal, karena ridak ada ĉij yang bernilai negatif dengan total cost sebesar 1890.

CONTOH MODEL TRANSPORTASI DAN PENYELESAIAN DENGAN INSPEKSI (ONGKOS TERKECIL/LEAST COST) DAN MODI

Contoh:

Lihat kembali persoalan di atas. Jika matriks solusi awal menggunakan metode inspeksi (ongkos terkecil) dan penyelesaian optimalnya menggunakan stepping stone, dapat dilakukan sebagai berikut:

A. Menentukan Solusi Awal dengan Inspeksi

- Prosedur:
 - Alokasikan dengan kapasitas penuh pada sel yang memiliki ongkos terkecil. Jika terdapat

- lebih dari 1 sel dengan ongkos terkecil, pilih salah satu.
- 2. Ulangi langkah 1 hingga seluruh kapasitas pada baris atau kolom terpenuhi.
- Catatan: Solusi awal matriks transportasi disebut feasible jika jumlah sel terisi adalah m+n-1 dimana m=jumlah baris, dan n=jumlah kolom. Jika sel terisi kurang dari m+n-1 maka perlu ditambahkan sel dummy dengan alokasi sebanyak 0 pada sel yang kosong.
- Solusi awal dengan metode inspeksi untuk masalah di atas:
 - Ongkos terkecil terdapat pada sel B2, isikan dengan kapasitas penuh sebesar 90. Akibatnya, kapasitas baris A sudah terpenuhi.
 - 2. Ongkos terkecil berikutnya yanag layak terdapat pada sel B3, isikan dengan kapasitas penuh sebesar 40. Akibatnya kapasitas kolom Tegal sudah terpenuhi.
 - Ongkos terkecil berikutnya yang layak terdapat pada sel C2, isikan dengan kapasitas penuh sebesar 20 (karena hanya tersisa 20 untuk kolom C. Akibatnya kapasitas kolom C sudah terpenuhi.
 - 4. Ongkos terkecil berikutnya yang layak terdapat pada sel B1, isikan dengan kapasitas penuh sebesar 20 (karena hanya tersisa 20 untuk baris B). Akibatnya kapasitas baris B sudah terpenuhi.
 - 5. Ongkos terkecil berikutnya yang layak terdapat pada sel C1, isikan sisa kapasitas yang masih mungkin (sebesar 30).
 - 6. Hasil alokasi dinyatakan pada Tabel 1:

TABEL 1

		Tujuan						
		Sc	olo	Kud	dus	Tegal		Total
	۸		20		5		8	00
	A			90				90
Pal	D		15		20		10	/0
Pabrik	В	20				40		60
	C		25		10		19	ΕO
	С	30		20			•	50
	Total	50		110		40		200

- 1. Cek kelayakan (Tabel 1)
 - o Jumlah sel terisi = 5 (sel basis)
 - o Jumlah Baris m=3: Jumlah Kolom n=3:
 - o m+n-1 = 3+3-1=5;
 - Solusi awal tersebut feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 1)
 - o Total Cost = (90x5) + (20x15) + (40x10) + (30x25) + (20x10) = 2100

B. Menentukan Solusi Optimal dengan MoDi

Lihat prosedur menggunakan metode MoDi pada contoh sebelumnya.

• Hitung indeks baris dan kolom dari sel terisi

		v1		v2		v3		
		So	olo	Kudus		Tegal		Total
u1	Α		20		5		8	90
uı	А			90				90
u2	В		15		20		10	60
uZ	D	20				40		00
2	C		25		10		19	ΕO
u3	С	30		20				50
	Total	50		110		40		200

Sel Terisi	Indeks	u1=0
A2	u1+v2=5	v2=5
B1	u2+v1=15	u2=-5
В3	u2+v3=10	v3=15
C1	u3+v1=25	v1=20
C2	u3+v2=10	u3=5

Hitung indeks perubahan ongkos dari sel kosong

Sel Indeks Prbhn.		ĉij
Kosong	Ongkos	
A1	ĉ11=c11-u1-v1	20-0-20=0
A3	ĉ13=c13-u1-v3	8-0-15=-7
B2	ĉ22=c22-u2-v2	20-(-5)-5=+20
C3	ĉ33=c33-u3-v3	19-5-15=-1

Tabel 1 belum optimal, karena masih ada ĉij yang bernilai negatif. Sel kosong A3 terpilih sebagai entering variable dan akan diisi berdasarkan loop A3-B3-B1-C1-C2-A2 sebesar minimum(40,30,90) yaitu sebesar 90, sebagai berikut:

		Tujuan													
	So	lo	Kudus		Kudus		Kudus		Kudus		Kudus		Tegal		Total
Α		20		5		8	90								
A			90-		+		90								
В		15		20		10	60								
D	20+	20+			-40		00								
C		25		10		19	ΕΛ								
С	30-		_20+				50								
Total	50	·	110		40	•	200								

Hasilnya adalah Tabel 2 berikut:

TABEL 2

		Tujuan						
	S	olo	Kud	Kudus Tegal		al	Total	
Α		20		5		8	90	
A			60		30		90	
D		15		20		10	40	
В	50				10		60	
С		25		10		19	50	
C			50				50	
Total	50	•	110		40		200	

- 1. Cek kelayakan (Tabel 2)
 - o Jumlah sel terisi = 5 (sel basis)
 - Solusi awal tersebut feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 2)
 - o Total Cost = (60x5) + (30x8) + (50x15) + (10x10) + (50x10) = 1890
- 3. Cek optimalisasi Tabel 2
 - Hitung indeks baris dan kolom sel terisi

Sel Terisi	Indeks	u1=0	
A2	u1+v2=5	v2=5	
A3	u1+v3=8	v3=8	
B1	u2+v1=15	v1=13	
В3	u2+v3=10	u2=2	
C2	u3+v2=10	u3=3	

 Hitung indeks perubahan ongkos sel kosong

Sel	Indeks Prbhn.	ĉij	
Kosong	Ongkos		
A1	ĉ11=c11-u1-v1	20-0-13=+7	
B2	ĉ22=c22-u2-v2	20-2-5=+13	
C1	ĉ31=c31-u3-v1	25-3-13=+9	
C3	ĉ33=c33-u3-v3	19-3-8=+8	

Tabel 2 sudah optimal, karena ridak ada ĉij yang bernilai negatif dengan total cost sebesar 1890.

CONTOH MODEL TRANSPORTASI DAN PENYELESAIAN DENGAN VAM (VOGEL APPROXIMATION METHOD) DAN MODI

Contoh:

Lihat kembali persoalan di atas. Jika matriks solusi awal menggunakan metode VAM dan penyelesaian optimalnya menggunakan stepping stone, dapat dilakukan sebagai berikut:

A. Menentukan Solusi Awal dengan VAM

- Prosedur:
 - 1. Hitung nilai pinalti (selisih 2 ongkos terkecil) pada semua baris dann kolom.
 - 2. Pilih nilai pinalti kolom/baris terbesar.
 - 3. Alokasikan dengan kapasitas penuh pada sel dengan ongkos terkecil dari kolom/baris pinalti terbesar/terpilih.
 - 4. Ulangi langkah 1 s.d. 3 hingga semua kapasitas baris/kolom terpenuhi.
- Catatan: Solusi awal matriks transportasi disebut *feasible* jika jumlah sel terisi adalah m+n-1 dimana m=jumlah baris, dan n=jumlah kolom. Jika sel terisi kurang dari m+n-1 maka perlu ditambahkan sel *dummy* dengan alokasi sebanyak 0 pada sel yang kosong.
- Solusi awal dengan metode VAM untuk masalah di atas:

TABEL 1

	Tujuan							F	Pinalt	i		
	Sc	olo	Kud	dus	Tegal		Kap	1	2	3	4	5
Α		20		5		8	90	3	3	12		
			60		30		90	3	3	12	-	-
В		15		20		10	60	5	5	5	5	10
	50				10		00	3	3	S	3	10
С		25		10		19	50	9				
			50				30	9	-	-	-	-
Kap	50 110			40								
Pinalti												
1	5 5		2	2								
2	í	5 15		2	2							
3	ĺ	5 -		- 2	2							
4	15 -		1	0								
5	-			-	1	0						

- 1. Cek kelayakan (Tabel 1)
 - Jumlah sel terisi = 5 (sel basis)
 - o Solusi awal tersebut feasible (layak) karena jumlah sel terisi = m+n-1
- 2. Total cost (Tabel 2)
 - O Total Cost = (60x5) + (30x8) + (50x15) + (10x10) + (50x10) = 1890

3. Cek optimalisasi Tabel 1

o Hitung indeks baris dan kolom sel terisi

Sel Terisi	Indeks	u1=0		
A2	u1+v2=5	v2=5		
A3	u1+v3=8	v3=8		
B1	u2+v1=15	v1=13		
В3	u2+v3=10	u2=2		
C2	u3+v2=10	u3=3		

o Hitung indeks perubahan ongkos sel kosong

Sel	Indeks Prbhn.	ĉij		
Kosong	Ongkos			
A1	ĉ11=c11-u1-v1	20-0-13=+7		
B2	ĉ22=c22-u2-v2	20-2-5=+13		
C1	ĉ31=c31-u3-v1	25-3-13=+9		
C3	ĉ33=c33-u3-v3	19-3-8=+8		

Tabel 1 sudah optimal, karena ridak ada ĉij yang bernilai negatif dengan total cost sebesar 1890.

Catatan:

Dari contoh tersebut di atas, tampak bahwa penggunaan metode VAM merupakan pendekatan terbaik dalam menentukan solusi awal permasalahan transportasi karena lebih cepat dalam mencapai solusi optimal. 24/11/2014 by Aris Marjuni